Attention Mechanism Attention(Q,K,V) = softmax(QKᵀ/√d_k)V Transformer Layer LayerNorm(x + MultiHead(Q,K,V)) Positional Encoding PE(pos,2i) = sin(pos/10000^(2i/d)) Cross-Entropy Loss L = -Σ y_i log(ŷ_i)

Technical Documentation

Comprehensive guides, API references, and technical resources for implementing Rotalabs.ai technologies

Quick Start

CloudAI Nexus

Deploy AI models across cloud platforms

RotaDiscover™

Self-service data discovery and analysis

GraphSense™

Advanced graph analytics engine

API Reference

REST APIs

Core APIs

  • GET /api/v1/models
  • POST /api/v1/inference
  • PUT /api/v1/training
View Full API Docs

SDKs & Libraries

Python SDK

pip install rotalabs-ai

JavaScript SDK

npm install @rotalabs/ai

Technical Guides

Implementation Guides

Best Practices

Examples & Resources